Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction
نویسندگان
چکیده
We construct a class of numerical schemes for the Liouville equation of geometric optics coupled with the Geometric Theory of Diffractions to simulate the high frequency linear waves with a discontinuous index of refraction. In the work [26], a Hamiltonian-preserving scheme for the Liouville equation was constructed to capture partial transmissions and reflections at the interfaces. These schemes are extended by incorporating diffraction terms derived from Geometric Theory of Diffraction into the numerical flux in order to capture diffraction at the interface. We give such a scheme for curved interfaces. This scheme is proved to be positive under a suitable time step constraint. Numerical experiments show that it can capture diffraction phenomena without fully resolving the wave length of the original wave equation.
منابع مشابه
Computational High Frequency Wave Diffraction by a Corner via the Liouville equation and Geometric Theory of Diffraction
We construct a numerical scheme based on the Liouville equation of geometric optics coupled with the Geometric Theory of Diffraction (GTD) to simulate the high frequency linear waves diffracted by a corner. While the reflection boundary conditions are used at the boundary, a diffraction condition, based on the GTD theory, is introduced at the vertex. These conditions are built into the numerica...
متن کاملComputation of High Frequency Wave Diffraction by a Half Plane via the Liouville Equation and Geometric Theory of Diffraction
We construct a numerical scheme based on the Liouville equation of geometric optics coupled with the Geometric Theory of Diffraction (GTD) to simulate the high frequency linear waves diffracted by a half plane. We first introduce a condition, based on the GTD theory, at the vertex of the half plane to account for the diffractions, and then build in this condition as well as the reflection bound...
متن کاملComputing high frequency solutions of symmetric hyperbolic systems with polarized waves∗
We develop computational methods for high frequency solutions of general symmetric hyperbolic systems with eigenvalue degeneracies (multiple eigenvalues with constant multiplicities) in the dispersion matrices that correspond to polarized waves. Physical examples of such systems include the three dimensional elastic waves and Maxwell equations. The computational methods are based on solving a c...
متن کاملOn the Quasi-random Choice Method for the Liouville Equation of Geometrical Optics with Discontinuous Wave Speed
We study the quasi-random choice method (QRCM) for the Liouville equation of geometrical optics with discontinuous local wave speed. This equation arises in the phase space computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discontinuities, and measure-valued solutions. The so-cal...
متن کاملOn the random choice method for the Liouville equation of geometrical optics with discontinuous local wave speeds∗
We study the random choice method (RCM) for the Liouville equation of geometrical optics with discontinuous local wave speeds. This problem arises in the computation of high frequency waves through interfaces, where waves undergo partial transmissions and reflections. The numerical challenges include interface, contact discontinuities, and measurevalued solutions. The purpose of this paper is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008